Transcriptome and unique cytokine microenvironment of Castleman disease

10/22/2021 In a recent study published in Modern Pathology researchers analyzed several key features in two subtypes of Castleman disease (CD); Unicentric CD (UCD), which typically involves a single enlarged lymph node and multicenteric CD (MCD), which involves multiple lymph node stations. UCD and MCD were compared as they share some histological features, such as some distinctive genes and pathways. However, after analysis of the biology there were several pathways unique to MCD, particularly related to inflammation and immune activation. The researchers found genes and unique pathways that may be involved in CD and these findings may lead to therapeutic options to target them.


Castleman disease (CD) represents a group of rare, heterogeneous and poorly understood disorders that share characteristic histopathological features. Unicentric CD (UCD) typically involves a single enlarged lymph node whereas multicentric CD (MCD) involves multiple lymph node stations. To understand the cellular basis of CD, we undertook a multi-platform analysis using targeted RNA sequencing, RNA in-situ hybridization (ISH), and adaptive immune receptor rearrangements (AIRR) profiling of archived tissue from 26 UCD, 14 MCD, and 31 non-CD reactive controls. UCD showed differential expression and upregulation of follicular dendritic cell markers (CXCL13, clusterin), angiogenesis factors (LPL, DLL4), extracellular matrix remodeling factors (TGFβ, SKIL, LOXL1, IL-1β, ADAM33, CLEC4A), complement components (C3, CR2) and germinal center activation markers (ZDHHC2 and BLK) compared to controls. MCD showed upregulation of IL-6 (IL-6ST, OSMR and LIFR), IL-2, plasma cell differentiation (XBP1), FDC marker (CXCL13, clusterin), fibroblastic reticular cell cytokine (CCL21), angiogenesis factor (VEGF), and mTORC1 pathway genes compared to UCD and controls. ISH studies demonstrated that VEGF was increased in the follicular dendritic cell-predominant atretic follicles and the interfollicular macrophages of MCD compared to UCD and controls. IL-6 expression was higher along interfollicular vasculature-associated cells of MCD. Immune repertoire analysis revealed oligoclonal expansions of T-cell populations in MCD cases (2/6) and UCD cases (1/9) that are consistent with antigen-driven T cell activation. The findings highlight the unique genes, pathways and cell types involved in UCD and MCD. We identify potential novel targets in CD that may be harnessed for therapeutics.

Arrow Shape Facebook Instagram Twitter Youtube Play Arrow Left