Lymph Node Transcriptomics in Idiopathic Multicentric Castleman Disease (iMCD) Identifies Pathogenic Mechanisms and **Biomarkers Including Increased Clusterin Expression**

Background

- Idiopathic multicentric Castleman disease (iMCD) is an atypical lymphoproliferative disorder with significant morbidity and mortality and a poorly understood pathophysiology. (Fig. 1)
- > Defined by a characteristic lymph node (LN) histology, patients can present with a range of symptoms from thrombocytopenia, anasarca, fever, renal dysfunction, and organomegaly (iMCD-TAFRO) to thrombocytosis, hypergammaglobulinemia, and plasmacytosis (iMCD-IPL); and patients not falling into either group are considered iMCD-NOS.
- \succ The molecular mechanisms of iMCD, particularly within these clinical subtypes and in comparison to other inflammatory disorders, has not been elucidated. Additionally, transcriptional programs, pathologic cell types, and distinguishing biomarkers have not been well explored, especially in LN tissue, the site of defining histopathologic changes in iMCD.

Idiopathic Multicentric Castleman Disease (iMCD) Histopathological Lymphadenopathy **Cytokine Storm** Abnormalities iMCD Healthy **Others?**

What transcriptional programs, cell types, and biomarkers govern iMCD pathology?

Figure 1: Characteristics of idiopathic multicentric Castleman disease (iMCD). iMCD is an inflammatory disorder characterized by enlarged lymph nodes with associated histopathological abnormalities including prominent follicular dendritic cells and increased vascularity. Patients also exhibit a life-threatening cytokine release syndrome often involving interleukin-6 (IL-6), but the pathology is not fully understood. The goal of this project is to identify genes/gene pathways involved in iMCD pathology in the lymph node.

> We implemented a two-tiered analytical approach using bulk RNAsequencing followed by targeted gene expression quantification to characterize the LN transcriptome(s) of iMCD clinical subtypes. (Fig. 2)

Figure 2: Gene expression workflow. Bulk RNA sequencing of iMCD lymph node tissue, and targeted gene quantification allows to determine gene transcription programs governing pathology in iMCD clinical subtypes compared to healthy controls and other neoplastic and autoimmune phenotypes.

Michael V. Gonzalez¹, Melanie Mumau¹, Joseph Zinski¹, Abiola Irvine¹, Joshua D. Brandstadter¹, Sheila Pierson¹, Bridget Austin¹, David C. Fajgenbaum¹ 1 Center for Cytokine Storm Treatment & Laboratory, University of Pennsylvania, Philadelphia, PA, USA.

Clinical cohort characteristics

	Sentinel	iMCD-TAFRO		Sentinel	iMCD-TAFRO	iMCD-IPL	iMCD-NOS	SLE	DLBCL
n	7	7	n	8	12*	3	4	4	5
Age, mean (SD)	NA	49.1 (12.01)	Age, mean (SD)	NA	44.7 (13.71)	40.9 (12.07)	44.4 (16.67)	NA	NA
Sex M:F	NA	2:5	Sex M:F	NA	4:8	1:2	3:1	NA	NA
Location of tissue sampled, n (%)	NA	Auxillary, 4 (67%), Groin, 1 (16.7%), Mediastinal, 1 (16.7%), Not Specified, 1 (16.7%)	Location of tipoup	NA	Auxillary, 5 (41.7%), Inguinal, 2 (16.7%), Cervical, 1 (8.3%), Groin, 1 (8.3%), Mediastinal, 1 (8.3%)	Cervical, 2 (66%), Groin, 1 (33%)	Auxillary, 2 (50%), Abdominal, 1 (25%), Cervical, 1 (25%)	NA	NA
Histologic variant, n (%)			sampled, n (%)						
Hyaline vascular	NA	5 (83.3%)							
Plasmacytic or mixed	NA	1 (16.7%)							
Not Specified	NA	1 (16.7%)							
	Sentinel	iMCD-TAFRO							
n	7	7	Histologic variant, n (%)						
Age, mean (SD)	NA	49.1 (12.01)	Hyaline vascular	NA	9 (75%)	1 (33%)	2 (50%)	NA	NA
Sex M:F	NA	2:5	Plasmacytic or mixed	NA	3 (25%)	2 (66%)	2 (50%)	NA	NA

Table 1, Two overlapping cohorts to investigate gene expression from lymph node tissue in iMCD patients compared to healthy controls. Left, bulk RNA sequencing cohort including iMCD-TAFRO, n=7 and Sentinel, n=7. Right, an expanded cohort to investigate iMCD clinical subtype gene expression similarities and differences. This included iMCD-TAFRO, n=12 (including the 7 samples from the RNA sequencing cohort, iMCD-IPL, n=3, iMCD-NOS, n=4, as well as neoplastic and autoimmune comparative groups, DLBCL, n=5, and SLE, n=4.

iMCD-TAFRO (n=7) vs Sentinel (n=7) bulk RNA sequencing identifies enriched proliferative, immune, and cell signaling pathways in iMCD lymph node tissue > Overall.

Cell type deconvolution and drug perturbation screen identifies potential pathologic cell types and targeted treatments in iMCD

	Cell Type	iMCE num	D TAFRO est. cell nber/10000 cells	Sentinel est. cell number/10,000 cells	T test P-value	
	B cells		2672	3184	0.115	
	Cycling cells		212	244	0.690	
	Dendritic cells		67	68	0.986	
	Erythroid cells		65	3	0.181	
	Hematopoietic stem cells		23	3	0.274	
	Innate lymphoid cells		281	176	0.178	
	Macrophages		42	36	0.805	
	Mast cells		64	2	0.258	
	Monocytes		63	0	0.050	
	Plasma cells		204	15	0.007	
	Promyelocytes		2	4	0.628	
	T cells		6282	6203	0.749	
	pDC		24	61	0.232	
	Perturbagen		z-score (sum)	Mechani	sm	
	mitomvcin-c		-14.09	Transcriptiona	l inhibitor	
F	AZD-3463		-14.08	ALK inhit	oitor	
	tivozanib		-14.04	VEGF inh	bitor	
	dacomitinib		-13.97	Kinase inhibitor		
	MK-2461		-13.93	c_Met inhibitor		
F	HG-6-64-01 parthenolide		-13.80	B-Raf inhibitor NF-KB inhibitor		
			-13.70			
	clocortolone-pivalate		-13.59	Topical St	eroid	
	resminostat		-13.55	HDAC inh	ibitor	Fi
F	donitrinton		12 / 2	Tripton d	rug	nc

way	Process Category	NES	FDR q-val	
on: G2M	Proliferation	1.855	0.043	
esponse	Pathway	1.801	0.044	
gnaling	Immune	1.779	0.036	
ion: E2F	Proliferation	1.772	0.031	
ponse	Immune	1.764	0.029	
aling	Signaling	1.713	0.051	
S	Development	1.713	0.044	
esis	Development	1.699	0.045	
on: Mitotic	Proliferation	1.685	0.046	
g Up	Signaling	1.674	0.047	
NFKB	Signaling	1.660	0.046	
	Pathway	1.651	0.048	
aling	Signaling	1.624	0.055	
cade	Immune	1.607	0.060	
scade	ade Immune		0.089	
onse Signaling		1.538	0.085	
aling	Signaling	1.538	0.081	
S	Proliferation	1.533	0.079	

were 108 were upregulated and downregulated, $(\log_2 FC > \pm 1, adj.)$ *P* <0.05) (**Fig 3A**)

С

- Several genes (boxed) have been seen in other 'omics based investigations of iMCD including VEGFA, IL6, and SOCS3 (Fig. **3A**)
- \succ Collectively, these DEGs were found to drive several gene related to cell pathways proliferation, immune function, and cell signaling. (Fig. 3B)

Figure 3. (A) Volcano Plot of differentially expressed genes in iMCD-TAFRO lymph node tissue vs Sentinel lymph nodes. log2 fold change is on the x axis and log10(adj.P) on the y axis. (B) Table of enriched gene pathways in iMCD-TAFRO lymph nodes using gene set enrichment analysis and hallmark pathways. NES = Normalized enrichment score

le-cell RNA sequencing data from mesenteric and lung-draining lymph node e from 12 deceased organ donors was used to deconvolute the bulk RNA iencing samples into estimated cell type proportions using the R based vare tool, Bisque, which uses a non-negative least-squares regression model.

type deconvolution highlighted **plasma cells** and **monocytes** in iMCD lymph tissue (Table 4A)

LINCS1000 database was used to predict potential reversing therapeutic urbations. Top differentially expressed genes from the iMCD-TAFRO versus thy control lymph node comparison (+/- log2FC>1.5, adjusted P<0.05) were to predict reversing drug perturbations (Table 4B).

note, tivozanib (VEGF inhibitor) and parthenolide (NF-KB inhibitor) were icted as potential therapies that may be helpful in iMCD.

(A) Cell type deconvolution of bulk RNA sequencing to identify differentially abundant cell populations. (B) Drug perturbation screen to identify potential therapies that reverse the DEG signature from iMCD-TAFRO.

Biomarker discovery and validation

Gene markers upregulated in all iMCD clinical subtypes

Gene	log2FC TAF	Padj TAF	log2FC IPL	padj_IPL	log2FC NOS	padj_NOS
XBP1	3.42	7.00E-06	4.91	2.46E-06	1.80	3.84E-03
PRDM1	1.39	7.31E-05	3.40	2.88E-06	1.03	2.58E-03
SPP1	5.03	5.27E-13	3.11	1.67E-02	3.86	6.29E-07
CLU	1.58	4.33E-03	1.78	1.50E-02	1.84	2.85E-02

Immunohistochemistry quantification of clusterin is significantly increased compared

Unique differentially expressed genes in iMCD clinical subtypes, C) iMCD-TAFRO, D) iMCD-IPL, and E) iMCD-NOS

Gene	Log2FC	Adj. P		Gene	Log2FC	Adj. P
PLA2G2A	4.43	1.53E-08		IL9	2.948	7.36E-03
CLEC4E	1.39	1.54E-03		KIR3DL1	2.378	2.78E-03
CCR10	2.00	2.79E-02		IL18RAP	2.311	4.64E-02
IL6	1.10	9.84E-03	TAL1		1.873	4.62E-02
S100A9	1.67	1.53E-03		MAPKAPK2	1.418	1.35E-02
LILRA5	1.32	1.57E-03	IFNAR2		1.033	4.71E-02
CCL23	1.46	9.74E-06	F			
IL1RL1	1.55	3.61E-02		Gene	Log2FC	Adj. P
CD276	1.31	1.69E-02		IL7	1.641	2.23E-02
CCL20	1.38	9.84E-03		TLR8	1.069	1.35E-03
IL8	2.07	2.43E-02		CX3CR1	1.066	2.85E-02
FCGR3A/B	1.73	1.53E-02		CLEC7A	1.058	3.70E-02
FN1	2.02	1.15E-02		CISH	1.024	4.45E-02

Figure 5. (A) Differentially expressed genes (DEGs) uniformly upregulated in all iMCD clinical subtypes, iMCD-TAFRO n=12, iMCD-IPL n=3, iMCD-NOS n=4 compared to sentinel lymph nodes. Notably, Clusterin (CLU in bold) was upregulated in all iMCD clinical subtypes, but not in comparative neoplastic (DLBCL) and autoimmune conditions (SLE). (B) Immunohistochemistry (IHC) quantification showed increased clusterin in iMCD lymph node tissue compared to sentinel, but was not distinguishing to other disease phenotypes. Tables C), D), and E) show unique DEGs in iMCD-TAFRO, iMCD-IPL, and iMCD-NOS respectively.

- Using a targeted gene expression panel (Nanostring nCounter, gene n = 580), we identified gene markers uniformly upregulated across iMCD clinical subtypes (**Fig. 5A**).
- IHC Clusterin was significantly enriched in iMCD compared to sentinel, but was not distinguishing from DLBCL or SLE (Fig. 5B).
- Unique DEGs were also identified in each iMCD clinical subtype. These biomarkers require additional investigation and validation (Fig. 5 C-E).

Conclusions

- 1) 425 upregulated and 108 downregulated genes were identified in iMCD lymph node compared to sentinel control samples. These genes drove the enrichment of several gene pathways related to cell proliferation, various immune cell function, and cell signaling.
- 2) Cell type deconvolution and drug perturbation screening identified plasma cells and monocytes as cell types of interest and VEGF and NF-KB as potential novel therapies in iMCD.
- 3) Several gene biomarkers were identified that were either uniquely expressed or uniformly upregulated across iMCD clinical subtypes. Immunohistochemistry was used to validate clusterin as a potential differentiating iMCD biomarker. It was significantly upregulated compared to sentinel lymph nodes (P=0.021), but was not significantly different from either DLBCL or SLE.