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Abstract

Purpose of review—The discovery of Kaposi sarcoma herpesvirus (KSHV) led to recognition 

of KSHV-associated multicentric Castleman disease (MCD) as a distinct lymphoproliferative 

disorder. The pathogenesis of KSHV-MCD is attributed to proliferation of KSHV-infected B cells, 

production of KSHV-encoded viral interleukin 6 by these cells, and dysregulation of human 

interleukin 6 and interleukin 10. This article reviews advances in the field of disease pathogenesis 

and targeted therapies.

Recent findings—Our understanding of the pathogenesis of KSHV-MCD has increased in 

recent years and improved therapies have been developed. Recent studies demonstrate that the 

anti-CD20 monoclonal antibody, rituximab, as well as virus-activated cytotoxic therapy using 

high-dose zidovudine and valganciclovir, can control symptoms and decrease adenopathy. With 

treatment, 1-year survival now exceeds 85%. Interestingly, even in the absence of pathologic 

findings of MCD, KSHV-infected patients may have inflammatory symptoms, excess cytokine 

production, and elevated KSHV viral load similar to KSHV-associated MCD. The term KSHV-

associated inflammatory cytokine syndrome has been proposed to describe such patients.

Summary—Recent advances in targeted therapy have improved outcomes in KSHV-MCD, and 

decreased need for cytotoxic chemotherapy. Improved understanding of the pathogenesis of 

KSHV-MCD and KSHV-associated inflammatory cytokine syndrome is needed, and will likely 

lead to additional advances in therapy for these disorders.
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INTRODUCTION

Kaposi sarcoma herpesvirus (KSHV) associated multicentric Castleman disease (KSHV-

MCD) is a lymphoproliferative disorder characterized by inflammatory symptoms, 

cytopenias, lymphadenopathy, splenomegaly and a waxing and waning course that is 

eventually lethal if untreated [1,2]. It is caused by KSHV, also called human herpesvirus 8 

(HHV-8) [1], which is also the etiologic agent of Kaposi sarcoma [3], primary effusion 

lymphoma (PEL) [4,5] and a recently described interleukin 6 (IL-6) related disease called 

KSHV-inflammatory cytokine syndrome (KICS) [6,7▪].

KSHV-MCD is one form of a cluster of diseases called Castleman disease. Benjamin 

Castleman first described angiofollicular lymph node hyperplasia in localized mediastinal 

masses in a disease now considered a hyaline vascular variant of Castleman disease (HV-

CD) [8,9]. Variants with expansion of plasmacytic [10] or plasmablastic cells [11] were 

subsequently described and also called Castleman disease. Most plasmacytic or 

plasmablastic Castle-man disease cases are multicentric and remarkable for IL-6-associated 

inflammatory symptoms [2,12,13]. However, some cases of plasmacytic or plasmablastic 

Castleman disease are unicentric, and HV-CD may occasionally be multicentric [14,15]. 

After discovery of KSHV [3], it was appreciated that most plasmablastic MCD arising in 

HIV-infected individuals was KSHV-associated [1], and that this was a distinct form of 

MCD.

KSHV-negative Castleman disease may be associated with or difficult to distinguish from 

other malignancies including dendritic cell tumors [16–18] and lymphoma [19,20]. KSHV-

negative MCD also has clinical overlap with other plasma cell disorders, including 

polyneuropathy, organomegaly, endocrinopathy, edema, M-protein and skin syndrome [21–

24] and IgG4-related sclerosing disease [25]. The clinicopathologic spectrum of Castleman 

disease may be due to variable driving factors that lead to dysregulation of IL-6 and/or 

vascular endothelial growth factor (VEGF) [26,27], accounting for overlapping clinical and 

histopatho-logic findings. The remainder of this review focuses on KSHV-MCD.

CLINICAL FEATURES OF KAPOSI SARCOMA HERPESVIRUS-ASSOCIATED 

MULTICENTRIC CASTLEMAN DISEASE

KSHV-MCD most often presents in HIV-infected individuals; symptoms include progressive 

fatigue, fever, night sweats, weight loss and adenopathy. Many patients have concurrent 

Kaposi sarcoma. Nonspecific respiratory and gastrointestinal symptoms, rashes and 

neuropathy are also common; edema and effusions are observed less frequently. Patients can 

become critically ill, either due to sepsis-like manifestations or hemophagocytic syndrome 

[28,29]. Patients with symptomatic disease generally have elevated C-reactive protein (CRP) 

and KSHV viral load [30], usually with other laboratory abnormalities such as anemia, 

thrombocytopenia, hypoalbuminemia, hyponatremia and elevated g-globulin [2,31,32▪▪,33▪,

34]. Computerized tomography typically shows diffuse adenopathy and splenomegaly (Fig. 

1). Diagnosis requires pathologic confirmation, usually from a lymph node biopsy (Fig. 2). 

Patients with KSHV-MCD are at high risk of developing KSHV-associated lymphomas, 

including PEL and large cell-lymphoma arising in KSHV-MCD, the latter which may 
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represent clonal expansion of the KSHV-infected plasmablasts. Diffuse large B-cell 

lymphoma is also seen in this patient population [11,35,36▪,37]. In patients with effusions, 

PEL should be excluded through evaluation of cytopathology, Epstein–Barr virus and 

KSHV, flow cytometry and B-cell clonality [38,39].

EPIDEMIOLOGY OF KAPOSI SARCOMA HERPESVIRUS-MULTICENTRIC 

CASTLEMAN DISEASE

Although KSHV-MCD is considered to be extremely rare, its incidence and prevalence are 

uncertain. It is not tracked in cancer registries. Given its nonspecific symptoms and a waxing 

and waning course, KSHV-MCD is almost certainly underrecognized. Unlike Kaposi 

sarcoma, whose incidence decreased with broad availability of highly active antiretroviral 

therapy (HAART) [40▪], the incidence of KSHV-MCD appears to be increasing in the 

HAART era [41]. Biologically, this is plausible. Unlike Kaposi sarcoma that is associated 

with degree of immunosuppression [42] and lack of KSHV specific T-cell response[43], 

KSHV-MCD frequently occurs despite suppressed HIV, relatively preserved CD4 counts 

[32▪▪,33▪,36▪], evidence of KSHV-specific T-cell response [44] and elevated levels of 

antibodies directed against KSHV capsid protein K8.1 [45].

There are almost no reports of KSHV-MCD in sub-Saharan Africa, despite high prevalence 

of both HIV and KSHV [46,47,48▪▪]. This likely reflects underdiagnosis and underreporting 

of KSHV-MCD; indeed, of 32 cases of KSHV-MCD followed at the NIH Clinical Center in 

Bethesda, Maryland, USA, five were in recent African immigrants (Uldrick, Polizzotto, and 

Yarchoan, unpublished observation). Additional studies are needed to define the incidence 

and prevalence of KSHV-MCD in different populations.

PATHOGENESIS OF KAPOSI SARCOMA HERPESVIRUS-MULTICENTRIC 

CASTLEMAN DISEASE

Like other herpesviruses, KSHV has two principal phases of gene expression: a latent phase, 

and a lytic phase in which production of new virions occurs. Latency-associated nuclear 

antigen (LANA) and other latent genes, as well as 12 KSHV encoded microRNA (miRNA) 

are expressed in both phases, whereas lytic genes are generally expressed only during the 

lytic phase. Certain genes, such as KSHV-encoded viral IL-6 (vIL-6), are predominantly 

released during lytic replication but can also be produced in small amounts during latent 

infection [49]. In all MCD, the main pathological process is B-cell hyperproliferation, 

caused in part by auto-crine and paracrine signaling and symptoms and laboratory 

abnormalities are related to increased levels of IL-6 [2,6]. In KSHV-MCD, there is also 

production of KSHV-encoded vIL-6 with detectable levels in the serum, and this is believed 

to be an important cause of disease manifestations [6,50]. Unlike human IL-6, which first 

binds a coreceptor, gp80, and then to gp130, vIL-6 signals directly through gp130 [51–58], 

and thus potentially affects a wider range of cells than human IL-6. In addition, KSHV-

MCD pathogenesis may involve upregulation of NF-kB by latently expressed viral-FLICE 

inhibitory protein (vFLIP) [59,60] or viral miRNA-K1 [61], and upregulation of VEGF and 

other factors by a viral G-protein coupled receptor [59–62]. Patients with KSHV-MCD also 
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frequently have elevated serum IL-10 and other cytokine abnormalities. The relative 

contribution of these various factors to KSHV-MCD (Table 1) [13,50,61,63,64,65▪▪,66–

68,69▪▪] is poorly understood.

It is also unclear why only occasional KSHV-infected patients develop MCD. In 

asymptomatic KSHV-infected individuals, KSHV can often be detected in saliva [70–

72,73▪▪,74], but relatively infrequently in peripheral blood mononuclear cells (PBMC) [47]. 

By contrast, patients with KSHV-MCD have a markedly increased KSHV viral load [6,33▪,

75–81] and expansion of KSHV-infected plasmablasts in lymph nodes and spleen. Affected 

lymphoid tissues have regressed germinal centers, increased vascularization and mantle zone 

expansion notable for KSHV-infected plasmablastoid cells, usually IgM+ [82], that are 

monotypic (λ-restricted) but polyclonal, and a larger population of KSHV-uninfected B cells 

[11,83]. All KSHV-infected cells express LANA, whereas a portion also express vIL-6 or 

other lytic genes [84–86].

KSHV has tropism for B cells, monocytes, dendritic cells, epitehelial, keratinocytes and 

endothelial cells [87–90]. Infection of target cells is complex [91]; xCT, integrin α3β1 [92–

94] and DC-SIGN [95,96] can function as receptors for KSHV entry. B-cell infection by 

KSHV is enhanced by activation signals such as IL-4 and CD40-ligand [95–97]. Stable B-

cell infection in vitro predominantly occurs in IgM+, l-restricted B cells with a ‘blasting’ 

morphology that is promoted by IL-6, recapitulating lymph node findings [98▪▪]. There is 

evidence that vFLIP plays a role in the bias toward l-restriction [65▪▪]. Additional efforts to 

dissect interactions between specific KSHV genes and human genes associated with 

plasmablast differentiation [82,99,100] may provide insights into disease pathogenesis. 

KSHV-MCD patients also tend to have certain KSHV miRNA polymorphisms [101▪▪], and 

further assessment of these findings as well as assessment of polymorphisms in other KSHV 

genes or the host genome affecting IL-6 signaling is warranted.

More recently, we described a group of patients with MCD-like fever and inflammatory 

symptoms, elevated serum vIL-6, and elevated KSHV viral load, but without pathological 

findings of KSHV-MCD[6]; this syndrome has been tentatively named KSHV-associated 

inflammatory cytokine syndrome (KICS) [7▪]. Studies to evaluate its natural history, 

pathogenesis and relation to KSHV-MCD are underway (NCT01419561).

THERAPY FOR KAPOSI SARCOMA HERPESVIRUS-MULTICENTRIC 

CASTLEMAN DISEASE

There is currently no established therapy for KSHVMCD. Until recently, most published 

literature consisted of case reports or small case series. Although HAART has not been 

formally studied, a strong case can be made for its use concurrent with specific therapy in 

HIV-infected patients with KSHV-MCD [30,102]. Additional specific treatment of 

KSHVMCD is generally reserved for patients with symptomatic disease. Such patients can 

become critically ill, and may require urgent treatment and supportive care, in an ICU if 

needed. Successful treatment has been reported with various chemotherapeutic agents, 

including etoposide, vincristine, vinblastine, cyclophosphamide or doxorubicin, either as 

singly or in combination. Likewise, temporary remission of symptoms after splenectomy has 
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been described, although splenectomy in HIV-infected patients carries a high risk of 

infectious complications [31,103,104▪▪]. Steroids may reduce inflammation in symptomatic 

patients; however, their utility is limited, and prolonged use commonly exacerbates Kaposi 

sarcoma [105]. Immunomodulation with interferon-α [31,106,107] and thalidomide [108] 

has also been noted to have activity. With most of these modalities, relapse is common, and 

until recently, overall survival has been poor; a pooled evaluation of 86 cases between 1985 

and 2006 reported a median survival of about 12 months, although somewhat better in 

patients on HAART [102].

In the past several years, targeted approaches have been prospectively evaluated in KSHV-

MCD. Results suggest improved outcomes over most modalities listed above. In clinical 

studies, several criteria have been employed for initiating therapy (Table 2), generally 

including elevated CRP and at least two to four clinical and laboratory abnormalities. 

Importantly, patients were not treated based on abnormal radiographic findings alone. Also, 

there are no commonly used response criteria. Investigators have primarily graded responses 

in relation to resolution of clinical symptoms and laboratory abnormalities. In an attempt to 

establish response criteria for KSHV-MCD, we prospectively evaluated KSHV-MCD 

response criteria that integrate clinical, common biochemical and radiographic findings 

[32▪▪]. Further efforts to harmonize response criteria among clinical trials are needed.

Radiographic responses and KSHV viral load dynamics have generally been evaluated as 

secondary outcomes [32▪▪,109,110]. Importantly, residual adenopathy, splenomegaly and 

detectable KSHV viral load have been noted even after resolution of symptoms. Such 

patients may represent a group with reservoirs of KSHV-infected B cells that are 

inadequately treated, and who may be at higher risk of recurrent KSHV-MCD symptoms 

[111▪]. Nonetheless, optimal duration of therapy and approach to such patients remains an 

area of uncertainty.

Rituximab

The best-studied agent in KSHV-MCD is rituximab, a humanized monoclonal antibody 

against the B-cell antigen CD20. Rituximab has been evaluated in two prospective phase 2 

studies. In the CastlemaB Study, 24 patients with HIV and KSHV-MCD received rituximab 

375 mg/m2 weekly for 4 weeks after completion of chemotherapy [109]. Ninety-two percent 

of patients met the primary outcome of sustained resolution of their MCD attack (Table 2) 

60 days after completion of chemotherapy. In eight of 10 evaluated patients, splenomegaly 

resolved, and at 1 year, 71% were alive and disease-free [109]. In a separate study, 21 

patients with symptomatic KSHVMCD were treated with rituximab 375 mg/m2 weekly for 4 

weeks without chemotherapy [110]. Ninety-five percent had resolution of symptoms and 

fever, with an estimated 79% of patients relapse-free at 2 years. In the latter study, none had 

a complete radiographic response by Response Evaluation Criteria in Solid Tumors criteria. 

However, KSHV viral load and CRP decreased significantly 1 month after completion of 

therapy [110].

Infusion reactions occur in most KSHV-MCD patients administered rituximab [109]. 

Additionally, rituximab is associated with worsening Kaposi sarcoma in 35–67% of patients 

[109,110]. The pathophysiology of Kaposi sarcoma relapses is unknown, but likely due to 
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adverse immunologic effects of B-cell depletion [45,112–115]. Risk of additional rare but 

serious infectious complications persist beyond dosing of rituximab [116,117]. Importantly, 

combination of rituximab with cytotoxic chemotherapy may be required for some patients 

with concurrent Kaposi sarcoma or severe manifestations of KSHV-MCD [118–120]. To 

address the issue of Kaposi sarcoma relapse, and to potentially also target Kaposi sarcoma 

spindle cells or monocytes that may be secreting vIL-6, we are currently evaluating 

rituximab in combination with liposomal doxorubicin in patients with concurrent KSHV-

MCD and Kaposi sarcoma or severe KSHVMCD (NCT00099073).

Interestingly, the mechanism of action of rituximab in KSHV-MCD is unclear. KSHV-

infected, vIL-6 expressing plasmablasts in KSHV-MCD [85,86] are generally CD20 

negative and unlikely to be directly targeted by rituximab [82,121]. However, CD20+ cells 

are noted in KSHV-uninfected lymphocytes within lymph node specimens [11] (Fig. 2), and 

rituximab activity likely results in part from diminished autocrine and paracrine signaling in 

the tumor microenvironment [122–127].

Ganciclovir and other inhibitors of Kaposi sarcoma herpesvirus replication

Ganciclovir is a 2’-deoxyguanosine nucleoside analogue phosphorylated by several 

herpesvirus thymidine kinases, including KSHV ORF36 [128–130] and ORF21 [128,129]. 

Ganciclovir triphosphate inhibits viral replication through incorporation into viral DNA and 

subsequent chain termination. Valganciclovir (VGC), an oral prodrug, decreases KSHV oral 

shedding [72]. In a case series of three patients with KSHV-MCD, ganciclovir 

administration led to at least short-term improvement in symptoms and decreased KSHV 

viral load, suggesting that control of KSHV replication may have a role in therapy [78]. 

However, cidofovir, a viral DNA polymerase inhibitor with greater in-vitro activity against 

KSHV replication [131] failed to demonstrate comparable activity in five patients with 

chemotherapy-dependent KSHV-MCD [132]. In a retrospective study of 52 patients with 

KSHV-MCD, 12 were treated with variable antiherpesvirus therapy with or without 

cytotoxic therapy (but no rituximab), and only 33% of these patients obtained a sustained 

clinical response [133▪]. Of eight patients who received valganciclovir, only three 

responded. This may be due to the fact that for B cells already infected with KSHV, 

ganciclovir blocks a late step in the KSHV lytic cycle and would not be expected to suppress 

vIL-6, an early lytic gene [134–136].

Virus activated cytotoxic therapy

Unlike most herpesvirus-induced tumors, many KSHV-infected plasmablasts in KSHV-

MCD express lytic viral genes that can provide targets for selective cytotoxicity. In addition 

to ganciclovir, KSHV ORF21 phosphorylates zidovudine (AZT) [128,130]. Although 

antiviral activity of these drugs is through inhibition of viral DNA replication, their 

triphosphate moieties have cytotoxic effects at relatively high concentrations in PEL cells in 

which KSHV lytic genes are activated; these effects are at least additive [128]. This virus-

induced cytotoxic activity is distinct from the antiviral activity of these drugs. On the basis 

of these findings, we performed a pilot study of high-dose AZT and VGC in 14 patients with 

symptomatic KSHVMCD. Patients received AZT 600 mg every 6 h combined with VGC 

900 mg every 12 h. Eighty-six percent of the treated patients obtained a clinical partial 
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response (PR) or better, and 50% obtained a biochemical PR or better. Most patients had 

decreased adenopathy and splenomegaly, with 36% meeting criteria for PR or better. From 

baseline to time of best response, KSHV viral load, IL-6, IL-10 and CRP all decreased 

significantly. All five patients with detectable serum vIL-6 at baseline had decreases with 

therapy. These results support the activity of virus-activated cytotoxic therapy in KSHV-

MCD. However, high-dose AZT combined with VGC has limitations. Toxicities are mainly 

hematologic, prohibiting continuous administration. Therapy was generally administered on 

days 1–7 of a 21-day cycle. Also, whereas long-term efficacy was observed in three of 14 

patients (21%), additional therapies were required in the other patients because of persistent 

or recurrent KSHVMCD symptoms [32▪▪]. This regimen may be best utilized in patients 

with mild disease or in combination with other modalities. Future studies will be needed to 

define the best use of this approach.

Experimental approaches

Outcomes in therapeutic trials of rituximab and AZT and VCG have been considerably 

better than historical controls [31,102]. Nonetheless, KSHV-MCD remains a challenging 

disease. Relapses are common, current approaches have toxicities and have not been 

standardized, and new effective therapies are urgently needed. With improved understanding 

of KSHV biology and KSHV-MCD pathogenesis, several approaches merit exploration. One 

is targeting IL-6 using monoclonal antibodies. Tocilizumab is a humanized anti-IL-6 

receptor (gp80) antibody [137–139], whereas siltuximab (formerly CNTO 328) [140] and 

sirukumab (CNTO 136) [141] are human monoclonal antibodies to IL-6. Tocilizumab and 

siltuximab have demonstrated activity in KSHV-negative MCD [140,142,143]. Although 

targeting human IL-6 does not directly affect vIL-6 signaling, it may still be sufficient in 

KSHV-MCD. Indeed, two patients with KSHV-MCD have been reported to respond to 

tocilizumab [143]. Tocilizumab is currently being evaluated alone and in combination with 

AZT and VGC (NCT01441063). Other agents worth considering for future studies include 

mTOR [144] inhibitors or newer immune modulators derivatives of thalidomide (IMiDs).

CONCLUSION

KSHV-MCD can be difficult to recognize and diagnose. Clinicians should be alert for this 

condition in HIV-infected patients with persistent, intermittent fever, especially if they have 

Kaposi sarcoma or are in a risk group for KSHV infection. Targeted therapy, combined with 

HAART, has led to substantial improvements in patient survival. Unlike early series in 

which median survival was about 12 months [31], overall survival with current targeted 

therapies exceeds 85% at 1 year and sustained responses are often seen [32▪▪,33▪,109,133▪]. 

Effective therapy for KSHV-MCD, especially rituximab, may also be associated with 

decreased risk of subsequent development of lymphoma [145], although this observation 

requires confirmation. Future studies evaluating novel therapies or rational combinations 

may further improve outcomes, limit toxicities and allow for personalized approaches in 

patients with KSHV-MCD, with concurrent KSHV-associated malignancies or with relapsed 

KSHV-MCD. Additional studies of biomarkers of KSHV viral reservoirs, such as KSHV 

viral load, or novel imaging modalities [146] may lead to improved risk stratification and 

allow for evaluation of consolidation therapy beyond resolution of symptoms. With 
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improved recognition of KSHV-MCD and ongoing therapeutic advances, KSHV-MCD 

should continue to move from being a highly fatal disorder to a manageable manifestation of 

chronic KSHV infection.
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KEY POINTS

• KSHV-MCD is a rare lymphoproliferative disorder diagnosed by biopsy, 

which shows characteristic findings of MCD with evidence of KSHV 

infection and KSHV-encoded viral IL-6.

• KSHV-MCD most often arises in patients with HIV, and can occur despite 

suppressed HIV and a relatively preserved CD4 count.

• KSHV-MCD presents with waxing and waning inflammatory symptoms that 

may include fevers, fatigue, nonspecific respiratory and gastrointestinal 

symptoms, adenopathy, splenomegaly, anemia, thrombocytopenia, low 

albumin and elevated inflammatory markers such as C-reactive protein.

• KSHV-MCD is likely underdiagnosed, especially in Africa, where HIV and 

KSHV coinfection is common.

• Targeted therapies for KSHV-MCD, including virus-activated cytotoxic 

therapy and rituximab, control symptoms and improve survival in patients 

with KSHV-MCD.
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FIGURE 1. 
Computerized tomography in Kaposi sarcoma herpesvirus-multicentric Castleman disease. 

(a) Coronal image of neck showing bilateral diffuse cervical adenopathy, red arrow points to 

example of enlarged lymph node on right. (b) Coronal image of torso, demonstrating 

dramatic splenomegaly, measuring 25 cm (upper limit of normal = 12 cm).
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FIGURE 2. 
Lymph node histopathology in Kaposi sarcoma herpesvirus-multicentric Castleman disease. 

(a) Regressed germinal center with expansion of plasmacytic cells in the mantle zone. 

Immunohistochemical staining for KSHV latency associated nuclear antigen (LANA) shows 

a proportion of the cells are KSHV infected. 20X magnification. (b) Immunohistochemical 

staining for viral interleukin-6 (vIL-6) shows a proportion of cells in the mantle zone express 

vIL-6. 20X magnification. (c) Immunohistochemistry demonstrating a high proportion of 

cells expressing CD20 (stained brown), with strongest expression in the germinal center, and 

a mixture of CD20 positive and negative cells in the mantle zone. 40X magnification. (d) 

Lymph node biopsy showing spindle cell expansion with leaky vascularity representing 

Kaposi sarcoma (black arrow), as well as typical finding of KSHV-MCD (red arrow) in the 

same lymph node. 10X magnification Images and pathology samples from patients on 

National Cancer Institute Institutional Review Board approved KSHV-MCD Natural History 
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Protocol (NCT00099073). All patients gave written informed consent in accordance with the 

Declaration of Helsinki.
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