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KEY POINTS

� Castleman disease (CD) is subclassified based on the number of enlarged lymph nodes,
Kaposi sarcoma–associated herpesvirus/human herpesvirus-8 (HHV-8) infection status,
and clinical presentation.

� The pathogenesis of unicentric CD (adenopathy of a single region of lymph nodes) is most
likely driven by a neoplastic follicular dendritic cell population.

� HHV-8–associated multicentric CD (adenopathy of multiple regions of lymph nodes)
pathogenesis is virally driven, whereas polyneuropathy, organomegaly, endocrinopathy,
monoclonal plasma cell disorder, and skin changes (POEMS)–associated multicentric
CD (MCD) pathogenesis is driven by a monoclonal plasma cell population.

� Idiopathic MCD is poorly understood, although clinical data suggest a pathologic role for
interleukin-6 in a subset of patients.
INTRODUCTION

Castleman disease (CD) describes a heterogeneous group of disorders defined by
shared lymph node histopathological features, including atrophic or hyperplastic
germinal centers, prominent follicular dendritic cells (FDCs), hypervascularization,
polyclonal lymphoproliferation, and/or polytypic plasmacytosis.1 Complicating diag-
nosis, these histopathologic features are not unique to CD but can be observed in
other diseases as well.2 Each subtype of CD has varying clinical features, causes,
treatments, and outcomes. This article establishes the nomenclature required to
discuss the different subtypes of CD (Fig. 1) and provides a summary of our current
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Fig. 1. CD classification. CD is classified based on the number of sites of enlarged lymph
nodes with CD histopathological features. On one side of the CD spectrum is unicentric
CD (UCD), solitary lymphadenopathy. On the other side of the spectrum is multicentric CD
(MCD), multiple sites of lymphadenopathy. A hybrid of UCD and MCD, regionally restricted
lymphadenopathy, has also been rarely observed. MCD is segmented based on Kaposi
sarcoma-associated herpesvirus (KSHV)/human herpesvirus-8 (HHV-8) status. HHV-8–nega-
tive MCD is categorized as either polyneuropathy, organomegaly, endocrinopathy, mono-
clonal plasma cell disorder, and skin changes (POEMS)–associated or idiopathic MCD, the
latter of which can be either with or without thrombocytopenia, anasarca, myelofibrosis,
renal dysfunction, and organomegaly (TAFRO) syndrome.

Fajgenbaum & Shilling12
understanding of the cause, cell types, signaling pathways, and effector cytokines
implicated in pathogenesis.
CD is first classified based on the number of regions of enlarged lymph nodes that

demonstrate histopathologic features consistent with CD. Unicentric CD (UCD)
involves a single enlarged lymph node or region of lymph nodes, whereas multicentric
CD (MCD) involves multiple regions of enlarged lymph nodes.
MCD is further divided based on Kaposi sarcoma-associated herpesvirus (KSHV)/

human herpesvirus-8 (HHV-8) infection status. In HHV-8–positive MCD, uncontrolled
HHV-8 infection signals for excessive cytokine production, which causes the clinical
and pathologic abnormalities.3 Monoclonal plasma cells underlying coexisting poly-
neuropathy, organomegaly, endocrinopathy, monoclonal plasma cell disorder, and
skin changes (POEMS) syndrome cause some cases (POEMS-associated MCD) of
HHV-8–negative MCD, whereas others are idiopathic (iMCD). POEMS is a paraneo-
plastic syndrome that often co-occurs with MCD (POEMS-associated MCD).4 iMCD
is itself heterogeneous; recent work has identified at least one distinct clinical subtype
of iMCD, which involves thrombocytopenia, anasarca, myelofibrosis, renal dysfunc-
tion, and organomegaly (TAFRO) syndrome (iMCD-TAFRO).5
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UNICENTRIC CASTLEMAN DISEASE

Most patients with UCD do not experience systemic symptoms.1 Typically, the
enlarged lymph node will be discovered inadvertently, during care for another condi-
tion or because it is impeding on nearby organs. UCD is diagnosed by histopathologic
examination of the excised lymph node. Removal of the node or region of nodes is
almost always curative, but recurrences of UCD have been reported.6 Thus, it is
thought that the pathologic cell types and drivers are present in the excised lymph
node. No cases of UCD have ever been reported to transition into MCD.

Cause

Viral, neoplastic, and reactive inflammatorymechanisms have all been proposed as etio-
logic mechanisms in UCD. Arguing against the viral hypothesis, T-Box Expressed in T
cells, which is expressed by cells in the context of high interferon-g during intracellular
pathogen infection, was not found to be expressed by T or B cells in UCD lymph nodes.7

Inonestudy, allUCD lymphnodeswere found tobeEpstein-Barr virus (EBV)positive,8 but
this observation was not reproduced in a separate cohort.9 Given the high prevalence of
EBV infectionandrarityofUCD, it isunlikely thatEBV isaprimarypathologicdriverofUCD.
In contrast to the viral hypothesis, several lines of evidence suggest that UCD is most

likely neoplastic. A study of lymphoproliferative disorders found that UCD lymph nodes
have an increased number of small follicles with abnormally low proliferation, which is
observed in follicular lymphoma so the investigators concluded this finding may be sug-
gestiveofneoplasticchanges.10UCD isoneof themostcommoncausesofparaneoplas-
tic pemphigus along with non-Hodgkin lymphoma and other hematologic neoplasia.11

Cytogenetic anomalies have been reported in cultured lymph node stromal cells from
several UCD cases.12–15 In fact, one study identified modifications in chromosome
segment 12q13 to 15, which is also commonly found in several benignmesenchymal tu-
mors; another study identified a clonal cytogenetic anomaly (t[1;22] [p22;q13]) that was
hypothesized toaffect themegakaryoblastic leukemia1 (MKL1)gene,which is implicated
in acute megakaryocytic leukemia, and the endothelial cell growth factor 1 gene, which
promotes angiogenesis and prevents cellular apoptosis. However, the most compelling
evidence for the neoplastic hypothesis comes from a larger study that used conventional
and methylation-specific polymerase chain reaction methods to assess monoclonality
within UCD lymph node tissue. Monoclonality was detected in 19 of 25 UCD cases but
not in 20 cases of lymphoid hyperplasia.16 Rare reports of familial cases of UCDdo exist,
although genetic sequencing was not performed.17,18

Cell Type

The cell type responsible for driving UCD pathogenesis has not been definitively iden-
tified. However, the studies described earlier suggest the monoclonal cell harboring
the genomic alterations may be stromal, specifically FDCs.12,14–16 Consistent with
these results, stromal cell overgrowth and FDC prominence and dysplasia are often
seen in UCD.19 FDCs are essential for germinal center formation and play a major
role in directing lymphocytes into the appropriate regions within the lymph node
and promoting B cell survival.20 In further support of a role for neoplastic FDCs as a
primary driver of UCD pathogenesis are reports of patients with UCD subsequently
developing FDC sarcoma in the same region of lymph nodes.21,22

Signaling Pathways

Dysregulated signaling pathways have not been extensively studied in UCD. Cases
describing overexpression of epidermal growth factor receptor21 and interleukin
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(IL)-623 may shed light on potential signaling pathways involved in other patients with
UCD.

Effector Cytokines

In the small portion of UCD cases with systemic symptoms, IL-6 is likely to be the
effector cytokine driving systemic symptoms.24 However, IL-6 levels have not been
systematically studied in several UCD cases and many cases do not have systemic
symptoms. Interestingly, FDCs’ role in orchestrating lymphocyte trafficking is largely
mediated through the secretion of chemokine (C-X-C motif) ligand 13 (CXCL13)
(also known as B lymphocyte chemoattractant), and dysplastic FDCs in UCD lymph
nodes strongly express this chemokine.22 Therefore, CXCL13 may play an important
role in UCD; but again, CXCL13 levels have not been systematically studied in UCD.
Taken together, experimental data and pathologic characteristics suggest a clonal

proliferation of FDCs as the etiologic driver and pathologic cell type in UCD. The au-
thors propose that acquired mutations in these stromal cells result in UCD. Additional
studies are needed to investigate this hypothesis.
HUMAN HERPESVIRUS-8–ASSOCIATED MULTICENTRIC CASTLEMAN DISEASE

Although lymph node histopathologic features overlap with those observed in UCD,
MCD involves multiple regions of enlarged nodes. Patients with MCD also experience
systemic symptoms, including progressive disease flares characterized by constitu-
tional symptoms, cytopenias, hepatosplenomegaly, fluid accumulation, and cytokine
storm–associatedmultiple organ system dysfunction. As detailed in the introduction of
this article, MCD is categorized as either HHV-8–associated MCD, POEMS-
associated MCD, or iMCD, each of which is discussed independently.

Cause

HHV-8 is the well-established etiologic cause of HHV-8–associated MCD.25 Human
immunodeficiency virus (HIV) infection or another cause of immunodeficiency enables
HHV-8 to escape from host immune control, lytically replicate in lymph node plasma-
blasts, and signal for the release of cytokines that drive clinical and pathologic
symptoms.26,27

Cell Type

HHV-8 infects B cells and plasmablasts, which can be detected by immunohisto-
chemical staining of patients’ lymph node for latency-associated nuclear antigen-1.
Highlighting the critical role of B cells in HHV-8–associated MCD, their depletion
with rituximab is a highly effective therapy.28 Peripheral T cell levels, including
polyfunctional effector memory CD81 T cells, have also been associated with
HHV-8–associated MCD pathogenesis.29

Signaling Pathways

Researchers have found that upregulation of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) by latently expressed viral-FLICE (viral Fas-
associating protein with death domain–like interleukin-1–converting enzyme) inhibi-
tory protein or viral microRNA-K1 and upregulation of vascular endothelial growth
factor (VEGF) and other factors by a viral G-protein couple receptor may be involved
in HHV-8–associated MCD pathogenesis.30 These secreted proteins induce B cell and
plasma cell proliferation, angiogenesis, and an acute-phase reaction.25
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Effector Cytokines

Human IL-6 and viral IL-6 (vIL-6) both play important roles in driving the B cell prolif-
eration and symptoms observed in HHV-8–associated MCD. Mechanistically, vIL-6
can bind directly to the IL-6 receptor (gp130) and does not need its coreceptor,
gp80, as human IL-6 does.30 Therefore, it is possible that a wider range of cells
may be affected by vIL-6 than human IL-6.

HUMAN HERPESVIRUS-8–NEGATIVE MULTICENTRIC CASTLEMAN DISEASE

When HHV-8 infection was first associated with MCD in 1994, the CD research com-
munity almost entirely shifted its focus to studying HHV-8–associated MCD. Until
recently, there was little recognition that a large proportion of patients with MCD are
HHV-8 negative. Despite having a similar incidence to HHV-8–associated MCD,31

HHV-8–negative MCD has received a fraction of the research attention and is signifi-
cantly less well understood. The following discussion presents our current molecular
and etiologic understanding of HHV-8–negative MCD, which is subclassified into
POEMS-associated MCD and iMCD.

POEMS–Associated Multicentric Castleman Disease

Cause/cell type
POEMS-associated MCD is thought to be caused by cytokine production from mono-
clonal plasma cells that have undergone genomic events, such as translocations or
deletions. Nearly all POEMS cases are l light chain restricted.4 Highlighting the
primary role of the monoclonal plasma cell population in POEMS pathogenesis, radi-
ation to an isolated plasmacytoma is often curative.4

Signaling pathways/effector cytokines
VEGF is the cytokine that best correlates with disease activity,32 although other cyto-
kines must also contribute because VEGF blockade has provided only mixed results
clinically.33 Other cytokines proposed to drive POEMS symptoms are IL-6, IL-12,
transforming growth factor–1b, and tumor necrosis factor–a.34

Idiopathic Multicentric Castleman Disease

Cause
The cause of iMCD is unknown. The heterogeneity of the disease and overlapping
clinical and pathologic abnormalities with other immunologic disorders suggest that
multiple processes each involving immune dysregulation and a common pathway of
increased cytokines may give rise to iMCD in different subsets of patients.35 In fact,
recent work has identified 2 subgroups of patients with iMCD, iMCD-TAFRO and
iMCD–non-TAFRO, which may represent different causes. To promote research
aimed at uncovering the cause of iMCD, the CD research community, led by the Cas-
tleman Disease Collaborative Network (CDCN), recently hypothesized 4 candidate
etiologically drivers of iMCD pathogenesis (Fig. 2), which are described later.

Autoimmune
iMCDmay be due to self-reactive antibodies, which stimulate the release of cytokines.
Autoimmune diseases can demonstrate clinical and histopathologic features that are
identical to iMCD. Nearly all lymph nodes of patients with rheumatoid arthritis and
15% to 30% of lymph nodes from patients with systemic lupus erythematosus display
CD histopathologic features.36,37 Patients with iMCD respond to therapies used to
treat autoimmune disease, such as anti–IL-6 receptor therapy and cyclosporine.38

Approximately 30% of iMCD case reports found autoantibodies and autoimmunity.31



Fig. 2. Hypothesized etiologic drivers of iMCD. The CD research community, led by the
CDCN, recently proposed 4 candidate etiologic drivers of iMCD pathogenesis: iMCD may
be due to (A) self-reactive antibodies, (B) germline mutations in genes regulating inflamma-
tion, (C) acquired oncogenic mutations, or (D) an infection with a pathogen. (Adapted from
Supplement to: Fajgenbaum DC, Ruth JR, Kelleher D, et al. The collaborative network
approach: a new framework to accelerate Castleman’s disease and other rare disease
research. Lancet Haematol 2016;3(4):e150–2; with permission.)
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However, it is unclear if these autoantibodies are etiologically responsible for iMCD,
propagators of inflammation, or secondary to a primary disease driver.

Autoinflammatory iMCD may be due to germline mutations in genes regulating
inflammation. A germline mutation in the Mediterranean fever gene, often found in fa-
milial Mediterranean fever (FMF) syndrome, was described in a reported iMCD case.39

Whether this is a novel genetic cause of iMCD or an atypical case of FMF is unclear. A
child with a multicentric Castleman-like syndrome was found to have homozygous
mutations in cat eye syndrome critical region protein 1, which encodes adenosine
deaminase 2 (ADA2).40 Deficiency of ADA2 is known to stimulate IL-6 induction
through adenosine A2B receptor activation.41 An increased proportion of patients
with iMCD harbored a polymorphism in the IL-6 receptor (IL-6R) gene compared
with healthy controls in a recent study. Individuals with this polymorphism expressed
significantly higher levels of soluble IL-6R, which can contribute to increased IL-6 ac-
tivity through the trans-signaling pathway.42 Although interesting, these associations
require confirmation and functional analysis.

Neoplastic iMCDmay be due to acquired oncogenicmutations. iMCDclinical and histo-
pathologic features overlap with those of lymphoma, and patients with iMCD have an
increased rate of malignancy compared with age-matched controls.31 Interestingly, in
a small study of 4 iMCD cases, all were found to have monoclonality in the lymph
node.16Themonoclonal cellsweremost likelystromal, as the lymphocytes in thosecases
werepolyclonal and lymphocytes inotherMCDcasesare typically polyclonal.43Apatient
with HIV-negative MCD, who was not tested for HHV-8, was found to have a somatic
translocation (46,XY,t[7;14] [p22;q22]) in lymph node tissue at the IL-6 locus (7p21–22).44

Pathogen iMCDmay be due to an infection. Patients with HHV-8–negative MCD share
clinicopathologic features with HHV-8–associated MCD, but a pathogen-driver has
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not been discovered to date. Thus, the authors hypothesized that a pathogen,
possibly a virus with homology to HHV-8, could be driving iMCD pathogenesis.
EBV, HHV-6, hepatitis B virus, cytomegalovirus, toxoplasma, and mycobacterium
tuberculosis infection have all been reported in at least one case of iMCD.8,45–49

Whether these infections are pathologic, coincidental, or secondary to iMCD immune
dysfunction remains to be determined.

Cell type The limited research conducted to date has generated conflicting reports
regarding the cell type responsible for driving iMCD pathogenesis and/or producing
IL-6. Candidate cell types include lymphocytes, plasma cells, monocytes, endothelial
cells, and FDCs.23,50–53 Despite the lack of consistent reports, some evidence for a
pathogenic role of B cells in some cases does exist. CD51 mantle zone B cells in
HIV-negative (HHV-8-unknown) MCD cases proliferate and secrete autoantibodies
because of factors produced by fibroblastic reticular dendritic cells.19 A subset of pa-
tients with iMCD respond clinically to B cell depletion with rituximab, supporting B
cells as a potential driver or important contributor in some iMCD cases.31 However,
it is clear that other cell types are involved in iMCD pathogenesis because B cell deple-
tion is not effective in all patients.31 Elevated serum soluble IL-2 receptor, a marker of T
cell activation, was found in 20 of 21 published cases of iMCD, suggesting a potential
role of T cells in iMCD pathogenesis.31

Signaling pathways/effector cytokines Although the pathologic cell types in iMCD are
unknown, it is clear from human and animal studies that IL-6 is sufficient and, in a sub-
set of patients, necessary to drive iMCD symptomatology, histopathology, and path-
ogenesis. IL-6 is a pleiotropic cytokine involved in the induction of a wide range of
activities, including plasmacytosis, hypergammaglobulinemia, thrombocytosis,
acute-phase protein production by the liver, and activation of macrophages and
T cells.25 Elevated IL-6 was first associated with iMCD in 1989.52 Clinical symptoms
often wax and wane with IL-6 levels, which can be highly elevated in patients with
iMCD during disease flare.54 Mouse models of excess IL-6 production recapitulated
many features of human iMCD, and the administration of anti–IL-6R monoclonal anti-
body (mAb) is effective in treating such mice.55,56 Moreover, the administration of re-
combinant IL-6 to humans can lead to an iMCD-like syndrome.57 Interruption of IL-6
signaling with anti–IL-6 or anti–IL-6R mAb is effective at ameliorating symptoms and
shrinking lymph nodes in some patients.31 Siltuximab, an anti–IL-6 mAb, became
the first, and is currently the only, Food and Drug Administration–approved therapy
for iMCD based on improved clinical symptoms and lymph node size in 34% of pa-
tients compared with 0% for placebo in a double-blind phase II clinical trial.58 Howev-
er, 66% of patients in the clinical trial did not respond to siltuximab treatment,
approximately half of which did not have elevated IL-6 levels.59 It is, therefore, likely
that other cytokines or soluble factors can also drive iMCD pathogenesis. Considering
the redundancy of functions played by cytokines, it is certainly plausible that the hy-
persecretion of similar cytokines could result in a related clinical phenotype.
Evidence has been slowly accumulating for a role of additional cytokines in iMCD

pathogenesis. A systematic review of iMCD case reports found that VEGF was
elevated in 16 of 20 cases,31 a finding that was subsequently confirmed in 17 cases.60

Elevated VEGF levels may explain the capillary leak syndrome and eruptive cherry
hemangiomatosis observed in some iMCD cases.61 Mechanistic target of rapamycin
(mTOR), which regulates VEGF expression, has also been implicated, as a relapsed/
refractory iMCD-TAFRO case experienced a prolonged remission on the mTOR inhib-
itor sirolimus.5 IL-1b has also been proposed as a possible driver of iMCD
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pathogenesis. Administration of anti–IL-1 therapy has been reported to be effective in
a few case reports, including 2 patients with iMCD refractory to anti–IL-6 therapy.62,63

IL-1b is upstream of IL-6 and VEGF in the proinflammatory cascade and leads to IL-6
production through NF-kB activation. Regardless of cause, excessive activation of in-
flammatory pathways in immune cells leads to histopathologic changes in the lymph
node and systemic symptoms observed in iMCD.

FUTURE DIRECTIONS

This article presents our current understanding of the pathogenesis for each subtype
of CD as of 2017. Although our understanding of CD has slowly improved over the last
6 decades, leading to improved patient survival and quality of life, additional research
is needed. The authors anticipate significant progress to be made in the coming years
through research studies led by the CDCN, including the ACCELERATE (Advancing
Castleman Care with an Electronic Longitudinal registry, E-Repository, And
Treatment/Effectiveness research) Natural History Registry (www.CDCN.org/
ACCELERATE), which is open for patient self-enrollment.
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