

Longitudinal, real-world data reveal treatment effectiveness in idiopathic multicentric Castleman disease and support current treatment guidelines Sheila K Pierson¹, Mateo Sarmiento Bustamante¹, Joshua D Brandstadter², Daisy Alapat³, Adam Bagg⁴, Mary Jo Lechowicz⁵, Gordan Srkalovic⁶, Megan Lim⁴, Frits van Rhee⁸, David C Fajgenbaum¹

¹Center for Cytokine Storm Treatment & Laboratory (CSTL), Perelman School of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ³Department of Pathology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ³Department of Pathology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ³Department of Pathology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ³Department of Pathology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ³Department of Pathology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Hematology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Hematology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Hematology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Hematology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Hematology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Hematology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Hematology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Hematology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Hematology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Hematology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Hematology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Pennsyl College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; ⁵Department of Hematology and Medical Oncology, Emory University of Pennsylvania, Philadelphia, PA, USA; ⁵Department of Hematology and Medical Oncology, Emory University of Pennsylvania, Philadelphia, PA, USA; ⁵Department of Hematology and Medical Oncology, Emory University of Pennsylvania, Philadelphia, PA, USA; ⁶Department of Hematology and Medical Oncology, Emory University of Pennsylvania, Philadelphia, PA, USA; ⁶Department of Pennsylvania, Philadelphia, Philadelphia, PA, USA; ⁶Department of Pennsylvania, Philadelphia, Phila School of Medicine, Atlanta, GA, USA; ⁶Sparrow Herbert-Herman Cancer Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA;

Introduction

- Idiopathic multicentric Castleman disease (iMCD) is an immunologic disorder with unknown etiology that is diagnosed in approximately 1200 individuals in the US annually.¹
- Presentation is heterogeneous ranging from mild/moderate constitutional symptoms to severe multi-organ dysfunction.
- Treatment guidelines were developed by an international expert panel in 2018 based on the review of a limited number of clinical trials and small case series.²
- Siltuximab, a monoclonal antibody against interleukin-6 (IL6) approved for the treatment of iMCD, is recommended first-line based on evidence from its phase II trial.³
- High-dose steroids and cytotoxic chemotherapy are recommended for patients with severe disease who progress on anti-IL6 therapy.
- For patients with mild/moderate disease not responding to IL6 blockade, rituximab +/- immunomodulators is recommended.
- While concurrent steroids are recommended in some cases, steroid monotherapy is discouraged.

Objective

- Limited real-world data exist on treatment patterns and effectiveness of therapies used to treat iMCD.
- Herein, we evaluate treatment regimens administered to a cohort of 88 iMCD patients with longitudinal treatment and response data.

Methods

- A panel of experts reviewed and confirmed the diagnosis for 88 iMCD patients enrolled in the ACCELERATE natural history registry.
- Real-world data, including longitudinal treatment and response data, were abstracted from patient medical records.
- Treatment regimen was defined as a single treatment or a combination of treatments initiated ≤ 2 weeks of one another.
- Durable treatment response was defined as the best response according to the change in the proportion of abnormal clinical/ laboratory criteria and no change in treatment for at least 1 year.
- Severity at the time of treatment initiation was defined as at least 2 of the following: renal failure, fluid accumulation, severe anemia, pulmonary involvement, or hospitalization.
- Time-to-next-treatment was used as a proxy for treatment failure. A survival analysis was performed on siltuximab +/- corticosteroids (CS), tocilizumab +/- CS, rituximab +/- CS, chemotherapy +/maintenance, and steroid monotherapy.
- Log rank test was used to determine differences across treatment regimens, and pairwise comparisons were Bonferroni corrected.

- options and are at risk of death due to progression.

91.	Table 1.	N=88
	Age at diagnosis Mean (SD) <18, N (%)	36.0 (16.1) 15 (17.0)
	Deceased, N (%)	8 (9.1)
sented	Sex, N (%) Female Male	42 (47.7) 46 (52.3)
	Race, N (%) American Indian / Alaska Native Asian Black / African American Native Hawaiian / Pacific Islander White Other/Refuse	1 (1.1) 10 (11.4) 10 (11.4) 1 (1.1) 58 (65.9) 8 (9.1)
	Meet iMCD minor diagnostic criteria. N (%)	84 (95.0)

- 55% (22/40) of patients who received siltuximab +/-CS and had an evaluable response achieved durable response (Table 2).
- Steroid monotherapy was significantly less likely to induce a durable response than siltuximab +/-CS (p=0.02).
- Response rates on a per patient level are no different when regimen is started in severe disease (p=0.08) (Fig. 2).
- We also found that the treatment regimen significantly predicts timeto-next-treatment (p<0.0001, Fig. 3).

Patients in mild/moderate disease and severe disease demonstrated a similar response to siltuximab. • Our results support current recommendations to administer siltuximab first-line and limit steroid monotherapy. • These results also demonstrate that additional agents are needed for refractory patients, who have few

Table 2.	Responded / Evaluable (%)
Siltuximab +/- CS	22/40 (55%)
Tocilizumab +/- CS	8/17 (47%)
Rituximab +/- CS	6/24 (25%)
Chemotherapy +/- maintenance	11/21 (52%)
Steroid monotherapy	1/33 (3%)

- Siltuximab +/-CS, tocilizumab +/-CS, and chemotherapy +/- maintenance each have a significantly longer time-to-next-treatment compared with steroids (p < 0.05).
- Siltuximab +/- CS also had a significantly longer timeto-next-treatment than rituximab +/- CS (p=0.02). • There were no other differences between regimens.

Table 3	Median Time-to-next- treatment, days [95% CI]
Siltuximab +/- CS	2316 [554, No Upper Limit]
Tocilizumab +/- CS	689 [234, No Upper Limit]
Rituximab +/- CS	166 [116, 495]
Chemotherapy +/- maintenance	338 [110, 791]
Steroid monotherapy	61.5 [36, 98]

References

- Mukherjee, S. et al. Epidemiology and treatment patterns of idiopathic multicentric Castleman disease in the era of IL-6-directed therapy. Blood Adv. 6,359-367.
- 2. van Rhee, F. et al. International, evidence-based consensus treatment guidelines for idiopathic multicentric Castleman disease. Blood 132, 2115–2124 (2018). . van Rhee, F. et al. Siltuximab for multicentric Castleman's
- disease: a randomised, double-blind, placebo-controlled trial. Lancet. Oncol. 15, 966–74 (2014).

Contact: <u>Sheila.Pierson@pennmedicine.upenn.edu</u> This study was funded by EUSA-RECORDATI.